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Introduction 

In previous publications (Holmes and Holmes, 2005) 
Rock Physics models of Gassmann (1951) and Krief 
(1990) were combined with petrophysical modeling, 
to derive pseudo acoustic logs – both compressional 
and shear – from other standard open-hole

Rock Physics, when linked with Petrophysical 
Modeling, has a wide range of applications:  

Figure 1: Examples of Rock Physics and Petrophysical
modeling applications 
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A procedure is described whereby continuous curves 
of solids – the matrix and shale components of rocks 
– can be generated for :  

• Compressional acoustic data DTP

• Shear acoustic data DTS

• Density log data RhoB 

The deterministic calculations are based on Krief 
rock physics modeling procedures, which are similar 
to the Gassmann approach.  Validity of the results 
can be verified by reconstructing pseudo logs and 
comparing with original data.   

Output from the calculations are a
showing variation with depth of:  

• DTP matrix 

• DTP shale 

• DTS matrix 

• DTS shale 

• RhoB matrix 

• RhoB shale 

From these curves, it is possible to calculate, by 
depth, each of the three log responses contributed by: 

• Shale  

• Matrix 

• Porosity  
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stic calculations are based on Krief 
rock physics modeling procedures, which are similar 
to the Gassmann approach.  Validity of the results 
can be verified by reconstructing pseudo logs and 

Output from the calculations are a series of curves, 
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depth, each of the three log responses contributed by:  
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Method 

Equations used in the Krief model are included 
below.  For a petrophysical solution, VP and Vs are 
replaced by reciprocal velocity – interval transit time, 
or acoustic slowness – DTP and DTS:  
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The Biot model equations are written as follows:  
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Where:  
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and making use of the following relations:  
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Table 1:  Listing of symbols used in the Krief 
equation, and their definitions  

Symbol Definition 

DTP Interval transit time of 
compressional wave 

DTS  interval transit time of shear 
wave  

RhoB, ρb density of the formation  
φ

e
  effective porosity of the 

formation, exclusive of the 
pore-space water  associated 
with the shale fraction  

φ
t
  total porosity, including pore-

space water associated with 
the shale fraction  

S
xo

  water saturation of the filtrate-
flushed zone  

S
w
  water saturation of the 

uninvaded zone  
µ  shear modulus (S wave 

propagation)  
K  elastic modulus (body waves)  
β

B
  Biot compressibility constant 

V
sh

  volume shale  

MB Bulk elastic modulus 
Subscript  Definition 

Xma  matrix (solid phase exclusive 
of clay fraction)  

Xmf  mud filtrate  
Xhc  Hydrocarbons  



 

In our petrophysical solution to the Krief equations, 
porosity, shale, and saturations are calculated using 
non-acoustic logs.  Then, using the Krief equations, 
together with published information on bulk and 
shear moduli, pseudo DTP and DTS curves are 
generated for a full range of fluid substitution 
oil/water and gas/water systems.  Assuming the entire 
modeling procedure is perfect, the pseudo acoustic 
curves should match the measured logs for the 
saturation values that exist in the reservoir.  One 
might speculate that, for the DTP and density logs the 
satuation is Sxo, whereas for the deeper reading DTS 
logs it is Sw.   

A generalized model of porous rock is shown: 

Figure 2:  Generalized model of porous rock

As defined here, shale is composed of clay minerals, 
with associated bound water, and silt.  Silt is made up 
of very fine grained clastic and/or calcareous material 
often about 50% of the shale volume.  F
petrophysical viewpoint, silt is difficult 
quantitatively from clay.  Shales have mostly high 
gamma ray responses.  Matrix is defined as the non
clay mineral grains and probably includes silt
material similar to the silts associated with clays in 
shales.   
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Figure 2:  Generalized model of porous rock 

is composed of clay minerals, 
with associated bound water, and silt.  Silt is made up 
of very fine grained clastic and/or calcareous material 

about 50% of the shale volume.  From a 
petrophysical viewpoint, silt is difficult to distinguish 

have mostly high 
is defined as the non-

clay mineral grains and probably includes silt-sized 
material similar to the silts associated with clays in 

Effective Porosity and contained fluids make
remainder of the rock.  The contained fluids consist 
of water and other fluids, mostly oil and/or gas.  

As defined in this paper, shales + 

One of the important results of this study is the 
ability to define, for each of the DTP, 
curves, the contribution of each of the 3 major 
components to the total log response.  

 

Figure 3:  Example of porous rock model with actual 
data from the Bakken oil reservoir 

 An important observation is that the porosity 
contribution of acoustic responses to total response is 
much higher than for the density log.  Percentage 
shale response is about the same for all 3 logs.  
Percentage matrix response is higher for the density 
log as compared with acoustic logs.  
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Effective Porosity and contained fluids make up the 
remainder of the rock.  The contained fluids consist 
of water and other fluids, mostly oil and/or gas.   

+ matrix = solids.  

One of the important results of this study is the 
ability to define, for each of the DTP, DTS and RhoB 
curves, the contribution of each of the 3 major 
components to the total log response.   

 

Figure 3:  Example of porous rock model with actual 
 

An important observation is that the porosity 
oustic responses to total response is 

much higher than for the density log.  Percentage 
response is about the same for all 3 logs.  

response is higher for the density 
log as compared with acoustic logs.   
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Calculation Procedures 

Initial petrophysical processing consists of standard 
deterministic calculations: 

• Shale Volume – frequently from a gamma

ray log, or from a density/neu

combination (but not in gas reservoirs)

• Total Porosity – best from a 

density/neutron combination, be

results are least affected by fluid content 

and changing matrix properties

• Effective porosity – by subtracting clay 

bound water from total porosity

• Water saturation – from any one of a 

number of equations.  Often the 

calculation that is the least reliable 

The second stage involves solution to the Krief 
model, to calculate pseudo acoustic and density logs.  
By comparing the pseudo logs with measured data, 
zone parameters of the solids can be adjusted to 
minimize differences. 

A third procedure, again involving the Krief model, 
is employed to generate continuous curves of the 
solids.  Using zone values as a starting point, and on 
a level-by-level basis, an initial matrix

to predict a shale value, to minimize difference
between pseudo and actual data.  This 
in turn used to predict the matrix 
procedure is iterated until differences are minimized. 
The end result is continuous curves of 
shale. 

To avoid the problem of non
permissible curve ranges for the solids are restricted 
to ± 50% of the original input.  The final curves from 
this procedure are recognized as the “Krief 
reconstructed”.   
 

A final check on validity of the reconstructions is 
through calculations of reconstructed volumetric 
porosity logs.   
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Figure 4: Flow chart of calculation/iteration procedure

As an independent check, determine theoretical 
DT and RhoB from volumetric equations and 

compare with original DT and 
fluid input as necessary to obtain the best match.

Using an iterative approach within the 
calculate matrix and shale

Additional refinement of original zone input 
and shale might be required.

Compare pseudo logs with actual logs.  Adjust 
matrix and shale zone input as necessary to 

improve match.

Run Krief model to calculate pseudo DTP, pseudo 
DTS and pseudo 

Determine: 

DTma, DTsh, Rhoma, Rhosh

Basic petrophysical calculations: 

φe, φt, Vsh

 

 

Figure 4: Flow chart of calculation/iteration procedure 

As an independent check, determine theoretical 
from volumetric equations and 

compare with original DT and RhoB curves.  Adjust 
fluid input as necessary to obtain the best match.

Using an iterative approach within the Krief model, 
shale as continuous curves.  

Additional refinement of original zone input matrix

might be required.

Compare pseudo logs with actual logs.  Adjust 
zone input as necessary to 

improve match.

model to calculate pseudo DTP, pseudo 
DTS and pseudo RhoB.

Determine: 

sh, and Krief components

Basic petrophysical calculations: 

sh, Sw, Shc
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Examples 

1. Oil reservoir: Teapot Dome, Wyoming 
2. Oil Reservoir: Bakken Formation, Montana 
3. Shale Gas Reservoir:  Western Canada 
4. Tight Gas Sand: Piceance Basin, Colorado  

The following template is used for data presentation of all examples:  

 

 

Figure 5: Description of template used for examples:  
Track 1: Petrophysical φe, Vsh, Sw, So or Sg 
Tracks 2 and 3: DTP and DTS original and pseudo curves (Krief Modeling) 
Tracks 4 and 5: DTP solids and DTP comparisons – volumetric modeling 
Tracks 6 and 7: DTS solids and DTS comparisons – volumetric modeling 
Tracks 8 and 9: RhoB solids and RhoB comparisons – volumetric modeling 

 

1 8 3 4 5 6 7 9 2 
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Figure 6: Example from an oil reservoir, Teapot Dome, Wyoming         
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Figure 7: Oil reservoir, Bakken Formation, Montana 
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Figure 8: Example from a shale gas reservoir in  Western Canada 
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Figure 9: DTP shale vs. resistivity from a shale gas reservoir in Western Canada  

 

 

Figure 10: DTS shale vs. resistivity from a shale gas reservoir in Western Canada  
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Figure 11: Example from tight gas sand in the Piceance Basin, Colorado 
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Figure 12: DTP shale vs. DTP matrix from tight gas sand in the Piceance Basin, Colorado 

 

 

Figure 13: DTS shale vs. DTS matrix from tight gas sand in the Piceance Basin, Colorado
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Conclusions 

The technique allows for distinction between shale, 
matrix, and free porosity, together with their fluid 
content, in contribution to log responses for:  

• DTP 
• DTS 
• RhoB 

Examination of changes with depth of shale and 
matrix properties helps in understanding changing 
rock properties with depth.   

The reconstructed logs, when compared with original 
log measurements, will indicate whether or not the 
solids curve calculations are correct.  Mismatches can 
mean one of three possibilities:  

• Incorrect calibration of properties which 
influence log responses 

• An incorrect basic model 
• Inconsistencies among logs used in the 

calculations 

A suggested geophysical application is to use the 
solids curves as a starting point, and then add 
porosity and contained fluids at specified levels to 
generate a series of theoretical acoustic and density 
profiles.  This procedure could be used to model 
different degrees of porosity development, and then 
apply to defining seismic signatures. 
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